Fast Inactivation in Shaker K+ Channels
نویسندگان
چکیده
Fast inactivating Shaker H4 potassium channels and nonconducting pore mutant Shaker H4 W434F channels have been used to correlate the installation and recovery of the fast inactivation of ionic current with changes in the kinetics of gating current known as "charge immobilization" (Armstrong, C.M., and F. Bezanilla. 1977. J. Gen. Physiol. 70:567-590.). Shaker H4 W434F gating currents are very similar to those of the conducting clone recorded in potassium-free solutions. This mutant channel allows the recording of the total gating charge return, even when returning from potentials that would largely inactivate conducting channels. As the depolarizing potential increased, the OFF gating currents decay phase at -90 mV return potential changed from a single fast component to at least two components, the slower requiring approximately 200 ms for a full charge return. The charge immobilization onset and the ionic current decay have an identical time course. The recoveries of gating current (Shaker H4 W434F) and ionic current (Shaker H4) in 2 mM external potassium have at least two components. Both recoveries are similar at -120 and -90 mV. In contrast, at higher potentials (-70 and -50 mV), the gating charge recovers significantly more slowly than the ionic current. A model with a single inactivated state cannot account for all our data, which strongly support the existence of "parallel" inactivated states. In this model, a fraction of the charge can be recovered upon repolarization while the channel pore is occupied by the NH2-terminus region.
منابع مشابه
Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-activated K+ channels.
Voltage-activated K+ channels are a family of closely related membrane proteins that differ in their gating behavior, conductance, and pharmacology. A prominent and physiologically important difference among K+ channels is their rate of inactivation. Inactivation rates range from milliseconds to seconds, and K+ channels with different inactivation properties have very different effects on signa...
متن کاملFast Inactivation in Shaker K 1 Channels Properties of Ionic and Gating Currents
Fast inactivating Shaker H4 potassium channels and nonconducting pore mutant Shaker H4 W434F channels have been used to correlate the installation and recovery of the fast inactivation of ionic current with changes in the kinetics of gating current known as “charge immobilization” (Armstrong, C.M., and F. Bezanilla. 1977. J. Gen. Physiol. 70:567–590.). Shaker H4 W434F gating currents are very s...
متن کاملA peptide derived from the Shaker B K+ channel produces short and long blocks of reconstituted Ca(2+)-dependent K+ channels.
A 20 amino acid synthetic peptide, corresponding to the amino-terminal region of the Shaker B (ShB) K+ channel and responsible for its fast inactivation, can block large conductance Ca(2+)-dependent K+ channels from rat brain and muscle. The ShB inactivation peptide produces two kinetically distinct blocking events in these channels. At lower concentrations, it produces short blocks, and at hig...
متن کاملDeactivation retards recovery from inactivation in Shaker K+ channels.
In Na+ channels, recovery from inactivation begins with a delay, followed by an exponential course, and hyperpolarization shortens the delay as well as hastens the entire exponential phase. These findings have been taken to indicate that Na+ channels must deactivate to recover from inactivation, and deactivation facilitates the unbinding of the inactivating particle. In contrast, it is demonstr...
متن کاملSlow inactivation in voltage gated potassium channels is insensitive to the binding of pore occluding peptide toxins.
Voltage gated potassium channels open and inactivate in response to changes of the voltage across the membrane. After removal of the fast N-type inactivation, voltage gated Shaker K-channels (Shaker-IR) are still able to inactivate through a poorly understood closure of the ion conduction pore. This, usually slower, inactivation shares with binding of pore occluding peptide toxin two important ...
متن کاملCorrelation between Charge Movement and Ionic Current during Slow Inactivation in Shaker K 1 Channels
Prolonged depolarization induces a slow inactivation process in some K 1 channels. We have studied ionic and gating currents during long depolarizations in the mutant Shaker H4D (6–46) K 1 channel and in the nonconducting mutant ( Shaker H4D (6–46)-W434F). These channels lack the amino terminus that confers the fast (N-type) inactivation (Hoshi, T., W.N. Zagotta, and R.W. Aldrich. 1991. Neuron....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 111 شماره
صفحات -
تاریخ انتشار 1998